Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis
نویسندگان
چکیده
The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction.
منابع مشابه
Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress.
Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosi...
متن کاملRole of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection.
From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcK ATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcK ATP channel closing can lead to cardiac protection. Also, the role of the sarcK ATP chan...
متن کاملATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats
ATP-sensitive potassium channels (K(ATP)) protect the myocardium from hypertrophy induced by pressure-overloading. In this study, we determined the effects of these channels in volume-overloading. We compared the effects of a K(ATP) agonist and a K(ATP) antagonist on sarcolemmal transmembrane current density (pA/pF) clamped at 20 mV increments of membrane potential from -80 to +40 mV in ventric...
متن کاملEarly opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection.
ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical...
متن کاملDifferential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.
The isoform-specific structure of the ATP-sensitive potassium (K(ATP)) channel endows it with differential fundamental properties, including physiological activation and pharmacology. Numerous studies have convincingly demonstrated that the pore-forming Kir6.2 (KCNJ11) and regulatory SUR2A (ABCC9) subunits are essential elements of the sarcolemmal K(ATP) channel in cardiac ventricular myocytes....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2016